Aging process of TiC particle dispersed Al-Cu and Al-Cu-Mg composite materials.
نویسندگان
چکیده
منابع مشابه
CORROSION FATIGUE CRACK PROPAGATION AND INHIBITION IN Al-Zn-Mg-Cu VS Al-Cu-Mg/Li ALLOYS
Age-hardenable aluminum alloys used in aerospace structures are susceptible to environment assisted fatigue crack propagation (EFCP), limiting component durability and safety. The objective is to quantitatively understand EFCP and its inhibition for important aerospace alloys: 7075-T651 (Al-Zn-Cu-Mg), C433-T3 (Al-Cu-Mg), and C47A-T86 (AlCu-Li). EFCP is understood through the hydrogen embrittlem...
متن کاملCASTABILITY OF Al-Li-Mg AND Al-Li-Cu-Mg ALLOYS
The objective of the present work is to study the casting characteristics of various A1-Li alloys, which include fluidity and strengths of the alloys and their interaction with cast molds. Materials investigated are Al-Li-Mg and Al-Li-Cu-Mg alloys with Li content of 2.5 wt%. The results show that sand molds with resin binders are good for A1-Li casting. Ceramic coatings can further reduce the m...
متن کاملInfluence of Natural Aging Time on Two-Step Aging Behavior of Al-Mg-Si(-Cu) Alloys
Nanoclusters formed during natural aging cause the negative effect of the two-step aging in the age-hardenable Al-Mg-Si alloys. The relationship between the clustering behavior during natural aging and the two-step aging behavior was studied using the hardness, differential scanning calorimetry (DSC), electrical resistivity measurements, transmission electron microscopy (TEM) observation in the...
متن کاملMICROSTRUCURE AND STRENGTHENING OF Al-Li-Cu-Mg ALLOYS
A detailed quantitative model for the strengthening of monolithic alloys and composites due to precipitation strengthening, solution strengthening, grain and subgrain strengthening, strengthening by dislocations and load transfer to ceramic inclusions is presented. The model includes a newly derived description of the effect of a precipitate free zone (PFZ) around the reinforcing phase incorpor...
متن کاملIN-SITU FABRICATION PROCESS OF AL- TIC COMPOSITE BY SLAG
The new in situ method for AI-TiC composite fabrication has been carried out. In this method, fabrication of AI-TiC composite by simultaneous introduction of titanium oxide and carbon into aluminum melt was investigated.. Under the process conditions, titanium and carbon reaction results in titanium carbide whiskers. The salt containing keriolite (Na3AIF6), titanium oxide (TiO2) and graphite us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Japan Institute of Light Metals
سال: 1997
ISSN: 0451-5994,1880-8018
DOI: 10.2464/jilm.47.28